منابع مشابه
Nonparametric Mixture of Regression Models.
Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is ...
متن کاملThesis Title: Bayesian Nonparametric Regression through Mixture Models
This thesis studies Bayesian nonparametric regression through mixture models. These types of models are highly flexible, yet also numerous, which raises the question of how to choose among the models for the application at hand. In answer to this question, we derive predictive equations for the conditional mean and density and carefully analyse the quantities involved. Our main contributions to...
متن کاملNonlinear Nonparametric Regression Models
Almost all of the current nonparametric regression methods such as smoothing splines, generalized additive models and varying coefficients models assume a linear relationship when nonparametric functions are regarded as parameters. In this article, we propose a general class of nonlinear nonparametric models that allow nonparametric functions to act nonlinearly. They arise in many fields as eit...
متن کاملNonparametric Estimation of Finite-mixture Models
The aim of this paper is to provide simple nonparametric methods to estimate finite-mixture models from data with repeated measurements. Three measurements suffice for the mixtures to be fully identified and so our approach can be used even with very short panel data. We provide distribution theory for estimators of the number of mixture components, the mixing proportions, as well as of the mix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2013
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2013.772897